—Chapter 10—

Electric Fields In
Matter
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10-1 The Moment of Charge Distribution

A. THE MOMENT OF CHARGE DISTRIBUTION

(1) The potential of any charge distribution at # is given by

Z

1 j p(r")
4me, r
where » = |7_" — F'l, the distance from the charge element to the point

o(r) =

7. Write 1/# in the form of a power series with Legendre polynomials,
1 1

7 NrZ2 4712 =2rr"cosf

!

= %Z (%) P, (cos @)

n=0
r' 1 ,,(3cos*6-1)
=—+—c0s0 +—1"?——=+ ..
r r? r3 2

where 8 is the angle between 7 and 7’. Thus, we obtain
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1 1 ,2(3cos 9—1) ,
(P()—ETG—O —+—c059+ ———7———] (r)dr
! 1 !
4ﬂ60[rjp(r)dr +——fr cosO p(r)dt’

1
+ 73 r'2(3cos? 0 — Vp(r')dt’ + -

The integral depends only on the charge distribution.

EXAMPLES:
1. Consider a spherical shell with uniform surface charge density o.
Find the potential at r > R ?
ANSWER:

o(r )———[ fp(r)dr +—1—fr cosO p(r")dt’

1
+§—3 r'?(3cos?0 — 1)p(r') dt’ + -

fp(r’) dr’' = fa R?sinf dfd¢ = o4nR?
fr’ cosO p(r)dt' = J.RCOSHO'RZ sin 6 d6 fdd)
s
= 0R3J cos@d(—cosf) - 2m
0

= —o2nR3 ES—Q
2

0

fr’Z(S cos?6 —1)p(r)dt’ = faRZ(B cos?6 — 1) R?sin 0 dOd¢
= o2nR* j(3 cos?6 — 1) d(—cos0)
= 02nR* (— cos® 0 + cos 9)|Z
=0

Therefore, its only nonzero term is the leading term, which is also
called the monopole. Thus, we obtain
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1 1 1
@()————fp( Ydr' = ——=04nR? = ——

4meg T € T

2. Consider a setup with two equal and opposite charges +q located

at positions z = +1/2 on the z-axis. Find the potential at r > [ ?
‘{)

q
g2 |8
£/2
-
ANSWER:
Since 6 is fixed, cos @ can be took outside the integral.
os6
o(r) = ——[ [paae + 252 [rpet av
(Bcos?60—-1) [ ., . |
+———273——— r'ep(r’)dt’ + -
Since

fp(r’)df’=q—q=0

fr’p(r') dr’ = <q é +(—q) <— é)) =ql
[repear =g @2 +(=q) <— é)z —0

therefore, its only nonzero term is the second term, which is also
called the dipole. Thus, we obtain

3. Consider a setup with four equal and opposite charges +q located
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at positions z = 0,+ d/v2 on the z-axis. Find the potential at
r>d?

Z

x /

ANSWER:
Since 6 is fixed, cos @ can be took outside the integral.

) = 1 1f(l)d,+cosef,(,)d,
cpr—4ﬂ60rpr T = r'p(r)dr

+— r2p(r)dt’ + -
Since
fp(r’)df’=q—2q+q=0
fr’p(r’) dt’ = qd + (—-2q)0 + q(—=d) = 0

fr’zp(r’) dt’ = qd? + (—2q)0 + q(—d)? = 2qd?

therefore, its only nonzero term is the third term, which is also
called the linear quadrupole. Thus, we obtain

1 (3cos?6—-1 2gd? (3 cos?6 —1
( )frlzp(rl) dT, — q ( )
41e, 2r3 4Te, 2r3

o(r) =

(2) This power series is called the multipole expansion of the potential.
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1 |1 1
o) = 4ne, [;fp(r’) dr’ + ") fr’ cos@ p(r')dt’
monopole dipole
x1/r x1/12

1
+Eﬁ r'2(3cos? 6 — 1)p(r') dt’ + -

quadrupole
«1/r3
Since

[paar =g
fr' cos 6 p(r') dt’ = ff () de =7 f?'p(r’) dr’
fr’2(3 cos? —1)p(r") dt’'

= f(:-;(f ) =172 ]°) p ) dr’

= [ (36t - Jit ]

=7t f(BF’F’T — |F’|2)p(r’) dt' -+

we then define

F’|2)p(r’) dt’

and get
fr’ cos@p(r)dt =p-+
fr’2(3 cos?0 —1)p(rdr' =+t Qf

Thus, we obtain

1 q p-# #F.Qf
‘P(“—ET?O[ r Tt et

———
monopole  dipole  quadrupole

where the quantities ¢, p, and Q depend only on the distribution, and
the dipole moment vector points in the direction from the negative
charge to the positive charge.
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B. THE ELECTRIC FIELD OF THE MOMENT

(1) Monopole moment
The potential of a monopole is given by
1 q ! !
o(r) = Tme T where q = jp(r )drt

0
which is spherical symmetry.

The electric field is

i
A
7 ’:' | \\q .
. 1 ¢q
E=-Vp=——1—¢
¢ 4meq 12 "

(2) Dipole moment
The potential of a dipole is given by

1 p-#
o) = Ete_o p_rz_ where p = J.?'p(r’) dt’ = dipole moment
If the dipole is located at the origin and pointed in the z-direction, the

potential is symmetrical around the z-axis.

Z
.///
a e
~ z =rcosf
NAT
.//
P ' ) x
x =rsinf
Thus, we have
@ 1 pcos@ 1 pz
@(r) = =
dmey, 12 4mey (x2 + z2)3/2
spherical Cartesian
coordinates coordinates

The electric field in Cartesian coordinates is
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P 3zx LD 322 1 X
Tane, (472252 dmeg\(2 42257 (2 +22)2)”
The electric field in spherical coordinates is

E=—ch
_ O(p 1d¢ . 1 Jdo .

ar r 00 rsineﬂ
p Z2cos@ 1 p sineé

7+
47‘[60 r3 r4me, 12

(2cos€r+sm9 9)

47‘[6 r3

(3) Quadrupole moment
The potential of a quadrupole is given by

()_ 1 ‘I"T Q h J(3—>r—>r-[- |r|2) (I)dl
(pr—4n60 573 where Q = r'|%)p’)dr

The electric field is
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10-2 Polarization

INDUCED DIPOLE

For some neutral atoms, when they are placed in the electric field, they
will produce a dipole moment. Such an atom is called polarized and a
dipole is called induced dipole.

E
—_—

+ + + + + +

Typically, this induced dipole moment is approximately proportional to
the field as

p=akE
The constant a is called atomic polarizability.

H He Li Be C Ne Na Ar K Cs
0.667 0205 243 560 167 0396 241 164 434 594

OS:

—— = 0.667 x 1073% m3 for hydrogen atom
4‘7T€0

Hand book of Chemistry and Physics, 91st ed. (Boca Raton: CRC
Press, 2010).

EXAMPLES:
1. Consider a neutral atom, consisting of a point nucleus (+q)
surrounded by a uniformly charged spherical cloud (—q) of radius
a?
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—q
Now, place the neutral atom in a uniform field E , the nucleus will
be shifted slightly to the right and the electron cloud to the left.

d
*—»0
/ +q

—q

E
Find the atomic polarizability of a polarized hydrogen atom.
ANSWER:
At equilibrium, the field produced by the electron cloud is

F=_F

1
Using Gauss's law, we have

> .. Qa da 1 qq
E -di=—=E -4nd*’=-“~-=2E = —=—
£ in a €o in * 47 €o in 4-17.'60 d2
Since
4 s
qq = zmd"p
_4 s
q=3map
we have
1 1/4 1 qd
Fin = 1“35(5”‘13) ) e
e §T[a3 TEY a

We let the dipole moment be

P =qd

and obtain the field inside the sphere point to the opposite
direction of E, ie.,

N 1 p

in —

" Ameyad
The hydrogen atom is polarized by the external field E and
produces a dipole moment p.
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E=—b=te @

B = 4neyadE = a = 4meyad
Thus, the uniform polarized mode gives atomic polarizability of
the polarized hydrogen atom as

= a3 = (05x10719)* = 0.13 x 10730 m3

41e

B. PERMANENT DIPOLE

(1) For some molecules, they have built-in electric dipole moment even in
the absence of an electric field. Such a dipole is called permanent dipole
and the molecule is called polar molecule.

EXAMPLES:
1. For the water molecule, the O-H bonds bent in the middle. The

bending of the O-H axes makes an angle of about 105° with one
another. This leaves a negative charge at the vertex and a net
positive charge on the opposite side. Thus, the water molecule
produces a dipole moment.

Water

p=6.13

(2) A permanent dipole, in a uniform external field, obviously experiences

a torque.

y/}_F_:
LA, -
2

-

Y
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- =3
=

Y - s - S o=

T=r><F=§qu+<—§>x(—q)E=qst=p><E
This torque rotates the dipole unless it is placed parallel or anti-
parallel to the field.

If we apply an external and opposite torque, it neutralizes the effect of
this torque given by 7 and it rotates the dipole from the angle 8, to an
angle 8 at an infinitesimal angular speed without any angular
acceleration. The amount of work done by the external torque can be
given by

6 6

W=| 7-d6 = | pEsin6d6 = —pE(cos By — cos6)
60 90
Considering the initial angle to be the angle at which the potential

energy is zero, the potential energy of the system can be given as,

=

U=-W = pE(cosg-—cose) = —pEcosf =—p-E
POLARIZATION

With an applied field, it is possible to separate the charges in the
constituent atoms and molecules.
There can then be an induced dipole moment in the material.

- @ =
@ 11

It is also possible that the constituents in the material have a
permanent electric dipole moment, which can be lined up in the
applied field
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In both cases, the induced field arising from the aligned dipoles acts to
reduce the applied field.

A material is polarized when a lot of little dipoles, induced or built-in,
point along the direction of the field. A convenient measure of this
effect is

P= pN = dipole moment per unit volume
which is called the polarization.

THE FIELD PRODUCED BY POLARIZED MATTER
Suppose we have a piece of polarized material - that is, an object
containing a lot of microscopic dipoles p lined up.

2

The polarization Pis given. The electric potential, at some external
point, is

Since the gradient acts on a function of 7 — 7" gives [c.f.1-4]

1\
Vi=)=—
r r

thus, we have

— 1 jﬁ VI 1 dl
(p_47'[€0 r '

Using the identity of product rules:
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The potential becomes

1 P 1 .
®=— fV’-(—-)dT’—f—(V’-P)dr’
dmeg | )y 7 v

Then, applying Gauss's divergence theorem to the first term, we get

12\ 1, - - 1
V. (=P|==V.-P+P-V—
a a

1 (P ., 1 (1, .,
o= $ i - [ L(v.B)ar
Amey Js 1 dmey Jyr
1 1/ 1 1 K
— jﬁ —(F-a)da' +—| =(-v'-F)ar
4neo st dmey )y, r
surface volume
charge charge
density density
We then let
op = ﬁ(?’) ' =P(r')cos@ - surface charge density

pp=—-V'-P (7)) «eee volume charge density
op and p; are called bound charge.

(2) The field produced by a polarized matter is
E= Vo

1 ! 1 !
__ ngab(r)da’— prb(r)d
dmmey Jg 7 dmey )y T
T 4me, 5 opirJca dmeg Jy\ 7 Ppr) Gt

1 7 ,
4n60)£ 2o dalt re;fvrzpb dr

Consider a case of a uniformly polarized matter, i.e., P = constant.

Since
pp=-V-P=0

we have
- 1 7 , 1 P, 1 7 o,
E:ETE_O S,,Tiabd 4_}71_6; ;ﬂ—ZP-nda =£—m—6;£}—ZP-da

Using Gauss's divergence theorem, we obtain

B (v P *)42 B J-V’ dr’
_47'[601; 72 dv’ = 47‘[60 '

Using the identity:
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V=-V'

we obtain
- - 1 ’V'A
=P -— | (-V)—d71’
4mey Jy r

where E’ is the field produced by the same matter with a uniform
charge density p = 1.

(3) Physical interpretation of E=- (ﬁ . V) E":
Suppose that there is a uniformly polarized sphere. The sphere consists
of two spheres of charges: a positive sphere and a negative sphere.
Without polarization the two are superimposed and cancel completely.
But when the sphere is uniformly polarized, all the positive charges
move slightly upward (the z direction), and all the negative charges
move slightly downward.

L N
e s 0. 0000
oo"oo.o.o
9.0. 0 .00 0. 0"0. 0.0 0
0. 0.0.9.% 00 %0s.0.0.0
6.9.9.° 0'0 0.0"0.0.0 0. 0
0. 0.0.0.%0.0.% e .0 0.0
00.90.9.9 .0°0.0,.0°0.9.° 0 90
0 0.0.0.%0.0.% ¢ 0.0.0
0.9.0,.0.9'0 9 09 .0 0 o o
e.0.0.9 %0 0.%0.0.0.0
0.9 ©.9'0.0 g'g 0.0 ¢
e.0.0 %q.0 LY )
®.0°0. 0.0 0.°
olole®

The two spheres no longer overlap perfectly: at the top there's a "cap"
of leftover positive charge and at the bottom a cap of negative charge.
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This "leftover" charge is the bound surface charge ay,.

ab=}_’>'ﬁ=Pc059

EXAMPLES:
1. A thick spherical shell (inner radius a, outer radius b) is made of

A

dielectric material with a "frozen-in" polarization P (r) = ~7

where k is a constant and r is the distance from the center. Find
the electric field.

VF +P b
a

P
i A
ANSWER:
op__L10( k\_ _k
Po = _rzarrr_rz
k b
— , r =
O'b—P'ﬁ= bk
-, r=a
a
Forr<a
qenc 0
F.di =l _ 05 F=
S €o

Fora <r <b:
qenc=¥o-bda+fpbdﬁ[
s v
ko, Tk,
:f_aa 51n9d9d¢+f —;Er sin 6 drdfdg
a
=—ka-4n —k(r—a) -4m

= —Amkr Ak Ak k

— TTKT TTKT —
ffE-da e _ T g gz = T o C s
s €9 €9 €o €T
Forr>b»b
qenczo

Fodi = =05F=

S 0
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2. Find the electric field produced by a uniformly polarized sphere
of radius R.

ANSWER:

e Method I:
Since P is uniform, V- P = 0 and op = P-f =Pcos6. Thus we
need to find the potential by a charge density P cos 8 plastered
over the surface of a sphere.
The potential in spherical coordinates is given by the method of
separation of variables |c.f.3-3| as

> B
Z l+1Pl(c059) forr =R
¢ = Z:OO

ZAlrlP,(cos 8), forr <R
1=0
The boundary conditions are

() at the surface of the sphere, the potential is continuous

B,
ZA R'Py(cos§) = ZRHlPl(cos 6) = AR' = Eﬁ{

(11) the radial derlvatlve of ¢ suffers a discontinuity
99wt _ 9P _ _0p
or Jar 60
o o
= —Z(l +1)= Rl+2 P,(cos9) — Z IA,R'"*P;(cos §) = o
oL=0

21+1

:Z(l+1) R Pl(c059)+ZlA R\ 1Pl(cosl9)—

R Z(Zl + 1)A4,R"1P,(cos 0) = E_
0
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Using the orthogonality relation,

20 +1 (™ | 0, forl=l
) Pyr(cos )P (cos0) sinf db = 6, = {1, for =1

we have

2 +1 (7 S . _
— . Py (cos H)Z(Zl + 1)A;R"""P;(cos 8) sin 8 d6
1=0

Zl, +1 T Op .
= ————f P,/ (cos@)—sin6 db
2 0 €0
N 2l +1 (" _
= Z(Zl + 1)A;R ——2——f P, (cosB)P;(cosB)sin6 db
1=0 0
24+1 ("o
= ————f 2 P,/ (cosB)sin6 db
2 o €o
-1 Zl, +1 nO'b .
=> Z(Zl + DART 6 = — | = P,/ (cosB)sin6 db
= o €o
Thus, we can obtain 4; as
2+ 1 ("o
QU+ 1DAR'1 =——=| 2Py(cos6)sinb db
2 o €o
A ! ! Jn P,(cos@)sinf db
= Ay =——— = | o,Py(cosh)sin
l EoRl -1 2 o bt
! 1JHP 0 P,;/(cosB)sin6 do
=— = cos r(cos B) sin
eoRV-1 2 ), l
Since P;(cos8) = cos 6, we have
A d 2l’-i_lfnP( 0)P(cosO)sin O db
) = - . cos r(cos @) sin
T eRUCIQU 4+ 2y ! !
1
= 7 Oy
eR'-IQU+1) "
0 , forl'’ #1
, = P P
=4 — =—-—, for I’ =1
EoRl 1(2 * 1 + 1) 360
Therefore, the potential is
B1 1+2 3
— P1(cos0) = ———cosf = -——cosf, forr =R
_r T 36T
¢= P
A rP;(cosf) = 3.7 Cos 6 , forr <R

0
The field outside the sphere is
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_0p ., 109 . 1 Jdo .

arr r 060 rsinéaq,’)

P 2R3cos® _ P R3sinf .
= Pt 0

R3P L

= §07§(2c059r+ sm99)
Inside the sphere, we have r cos 8 = z and obtain
, P P
Ey,=—-Vp = T30 T3,

Method II:
Using Gauss's law, the electric field of a sphere with uniform
charge density p = 1 is given as

11
E),_ 56_0 4"—56—04’ , r<R
1T 1 7
4-7'[604’”24ﬂ - 4mey 13 r>R
Forr <R
. . N. Pd_, P __ P
Forr >R

In Cartesian coordinates:
. 1 7 1 xX+yy+2zzZ

!

T Ame,r3 4me, (x2+y2+ 22)3/2
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d 0 d 1 xX+yy+zzZ
~(Pe—=+P —+P,=—
0x dy 0z | 4me (xz +y2 +22)3/2
1 [P 3x
— 4n€0 _T—3 — ’r_5 (Pxx + Pyy + PZZ)]
1 |p 3r (ﬁ . ?)
Cdme lrd 8 X
1 [B-3(F-7) f‘
_41'[60 I r3 X

Thus, we obtain
1 3(P-7)p-P

E=

4me,

r3

. Find the electric field inside a uniformly polarized slab.

=

ANSWER:
ap = ﬁ =P
The surface charges are at the top and bottom surface.

The potential between two plates is

at_Pt

®=—

€ €

The field inside the slab is
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10-3 Dielectric Constant

A. DIELECTRICS - POLARIZABLE INSULATORS

(1) For a parallel-plate capacitor, the capacitance is given by

4

A)

T

€04
Co = @ B kel
V S
The field between the two plates is
L}I}
+ +  +  +  + o+ o+ T

R |

EQO_(j‘l where Q, = g4

(2) Suppose we fill the space between the two plates with a slab of
insulator. If the material made up the slab is polarized, then it is called
a dielectric.
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A)

where

Qenc = Q + Qbound = QO
Assume that at fixed voltage, the charge Q on the top conducting plate

is proportional to Qy when an empty capacitor is filled with a dielectric
material,
Q =kQq Kk is called the dielectric constant
which also implies that
- K N
R RS
Then, we obtain

- - ﬁ - -
E0=KEO—€_:P=EO(K_1)EO
0

Thus, the field EO in the dielectric causes P. When P is proportional to
EO, the matter is called linear dielectric.
Sometimes we would express P as

P = Xeeoﬁo
where y, = k — 1 is called the electric susceptibility of the dielectric
matter.

The capacitance of a dielectric is given by

That is, we find more charge on each of the plates, for the same
potential difference, plate area, and distance of separation.
Dielectric constants for some common substance where k¥ > 1 for all
ordinary materials.

Dielectric Dielectric
Material Constant Material Constant
Vacuum | Benzene 2.28
Helium 1.000065  Diamond 5.7-59
Neon 1.00013 Salt 59
Hydrogen (H;) 1.000254  Silicon 11.7
Argon 1.000517  Methanol 33.0
Air (dry) 1.000536  Water 80.1
Nitrogen (N») 1.000548  Ice (-30° C) 104
Water vapor (100° C)  1.00589 KTaNbO; (0° C) 34,000
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EXAMPLES:
1. Consider a dielectric sphere characterized by a dielectric constant

K into a homogeneous electric field EO. The dielectric sphere

develops some polarization P. Find the electric field inside the
sphere.

R R R R R R
ANSWER:
e Method I:
Inside the polarized sphere, the total field is
F'=Fy+E,
Since
P= €o(Kc — 1)5 !
and

-

B = P
i_360

we obtain
— <= Loy — 55— >P=——— EOEO =3 K_-|-_2_ EOEO

The total field inside the sphere can be also expressed as

=By 3 () ey = (— ) E
0 3¢, k42 €00 =\ ¥ 2 )"0
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e Method II:

Suppose the electric field inside the sphere is equal to EO. Since
the material is a linear dielectric the polarization is proportional
to the total electric field:

P 0= XeEOEO .

A uniformly polarized sphere with polarization P, produces an
internal electric field equal to

q P, 1 4 ,

Ey = T3e, —ge—OXeeoEo = —3Xeko

The electric field produced by the polarization of the sphere will
therefore reduce the electric field inside the sphere. This change
in the electric field will change the polarization of the sphere by
ﬁ1 = XeEOEI = —Xe€o %Xeﬁo = _% 60)(350

This change in the polarization of the sphere will again change
the electric field inside the sphere. This change of the electric
field strength is equal to

PYE: WS W A ST ZE
2 = 3¢, 36, 3€0Xe 0= 3)(3 0

This iterative process will continue indefinitely, and the final
electric field will be equal to

p-y (- "po_ 1 p_ 3 p_3 3
B 3he) B0 T 0T 0 T k2 ®

n=0 1 +§Xe

2. Find the bound charge density on the surface of the dielectric of a

./

105525 5
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Q =0dA
A++++++++++++4

ey

Ein

+/+++++++++++++ Qbound = 9p4

ANSWER:

In the interior of the dielectric, the applied field arising from the
surface charge of the conductor, and the induced field arising
from the oriented dipole,

= o ~ - O’b ~
E=—2 En=——2

€o €o
The total field in the dielectric is given by
E, - E + Ein
From equation (a), we have E = kE' and obtain
- 1. o
E'=-E=—2

K K€Eo

b

B. GAUSS'S LAW WITH DIELECTRICS

(1) Choose a Gaussian surface in which contains both the charge on the
conductor and that on the surface of the dielectric.

. Gauss surface
Ofree =0 7,

t
{+++++++++++++4—+++++§ !
= - - - - - - - 0b|

105526 5



@)

3)

The total field in the dielectric is given by

5 O, Oy, o k—1\o\, o
E=—Z2—-——2=|\——\|—|—)z2=—12
€0 €0 €o K )€ K€Eg

Therefore, in terms of the free charge, we obtain
KZGOE =02z
Define the electric displacement field in the dielectric by
5 = KEOE
Gauss's law in the presence of dielectrics can then be written as

jgl_))~dd’=faz“~dd’=que
S )

where g 1S the free charge contained inside the closed surface.

Using Gauss's divergence theorem, we can obtain Gauss's law in
differential form:

)Eﬁda=fvﬁdr:fpfreedrzvﬁ:pﬁee
S % v
Since
5=K€0§=60E+I3
we obtain
V- (eof +P) = prec = €V E = =V P + py
Since
pp=-—V- P the bound charge within the dielectric
thus, we have
€V E = pp + Prrec = P
In any system whatsoever, the fundamental relation (namely Gauss's

law) between the total electric field E within the dielectric and the

total charge density p remains valid.

If additionally we are dealing with a linear dielectric, then
5=K€0§=60§+ﬁ=6§

where € = ke is known as the permittivity of the dielectric, and € is

called the permittivity of free space.

Gauss's law becomes

V-D=eV B =py, oV =20

€
5~da=5)£E~da=qfree=>jgﬁ-da=——
) ) S
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EXAMPLES:
1. A long straight wire, carrying uniform line charge 4, is
surrounded by rubber insulation out to a radius a. Find the
electric displacement.

Gaussian surface
ANSWER:
Using Gauss's law, we have

= - A
D-dd= =>D-2nsL=AL=>D =—7+
ﬁ a free s ZT[Sr

Outside the rubber, P= 0, the field is
. D . D 2
E = —_— — P = —_— = T

€ €y 2meyS
Inside the rubber, since we do not know 1_5, the field cannot be
determined.

2. A thick spherical shell (inner radius a, outer radius b) is made of

A

dielectric material with a "frozen-in" polarization P (r) = -7,

where k is a constant and r is the distance from the center. Find
the electric field.

+P b
w
a
P
Fp A
ANSWER:
Since qgee =0

fﬁ -dd = qgee = 0 = D = 0 everywhere
s

Since D = EOE +P =0, so we have

= 0 , r<aorr>bhb
L
e |——7F a<r<hb
€T
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3. A metal sphere of radius a carries a charge Q. It is surrounded,
out to radius b, by linear dielectric material of permittivity €.
Find the potential at the center.

b

a

ANSWER:
Outside the metal sphere:

~ - ~ Q N .
£D cdd =Qpee =0 =>D = E_{ﬁ-r, for all points r > a

For a <r < b:

. D Q |
€ _47rer2r

For r > b:

. D Q

Inside the metal sphere:
E=0,D=€¢E=0
The potential at the center is therefore

0—)
(pz—jE ds
b Q a Q 0
:__LETE_OW —-LG_——zdr— odr
Ql1/1 1 1/1 1
~in g(@‘a)*;(&‘é)}
ofT1 1 1
~ 4rt|egb E_EE]

C. BOUNDARY-VALUE PROBLEMS WITH DIELECTRICS

(1) According to Helmholtz theorem, the electrostatic field Eis uniquely
determined by
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v-E=L andvxE=0

€o
Since the curl of D is not always zero:
P=0
Vacuum B
Dielectric -
P=0

VxD=Vx(eE+PF)=VxP=0
D cannot be uniquely determined by the free charge only as
VD = Prrec .
Thus, we need boundary conditions on D at various dielectric surfaces.

Recall that for a charged conductor with surface charge density o. We
choose a Gaussian surface for an extreme small area dd and let the
thickness go to zero to avoid the parallel components of E through the
Gaussian surface.

2) Conductor
EZJ. = 0
Ey=0
Eyy
Gauss surface

Thus, we obtain

- oda o

E'da=E1J_da—E2J_da=——':E1J_— EZJ. = —

S —_ =7 €o hrvnd — €o
Air =0 Air conductor

conductor
E, is discontinuous across the surface of the conductor by an amount

/€.
For if we use Stokes' theorem and let the width of the closed loop go to
ZETO0.
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(2) Conductor
E;p =0
Ez =0

I
|
|
1
t
I
closed loop;
I
d

thickness — 0

Thus, we obtain

fﬁ-d§=51ud5—52ud5 =0=Ey—- Ey =0
¢ Tan =0 Air e

Air Air conductor

conductor
E| is continuous across the surface of the conductor.

(3) Now back to the electric displacement field D, we choose a Gaussian
surface for a very tiny area dd and let the thickness go to zero.

@ Air €

TDu

2) Dielectric €

Thus, we obtain

N
fD . d(_i = D]_J_da - DZJ_da = O-freeda = DlJ_ - DZJ. = Ofree
S — — —~— —~—
Air dielectric media ®  media @

D, is discontinuous across the surface of the dielectric. For linear

dielectrics D = €E, we have
€1E11 — €E31 = Opee
—— N———

media @  media @
We then can choose a closed loop such that the width goes to zero as

@ Air €,

(2) Dielectric €

10531 H



Since

ffCD-d§=L(VxD)-d&:L(VxP)dd:iP.d;

we obtain

Dyyds — Dyyds = Pyyds — Pyds = Dy — Dy = Py — Py

Air dielectric Air dielectric

Dy is also discontinuous across the surface of the dielectric.

EXAMPLES:

1.

A sphere of homogeneous linear dielectric material is placed in an

otherwise uniform electric field EO. Find the electric field inside
the sphere.

EI]
ANSWER:
The solution of Laplace's equation for @ is given by the method
of separation of variables as

Z A;r'P(cos ) , inside the sphere
@=1"° o
—EyRcos6 + Z ;%1' P;(cos9), outside the sphere
1=0

Since there are two unknown variables, we need boundary
conditions at r = R to determine the values.

Pout(R) = @in(R) -+ (a)

D11 (R) = D31 (R) = a5 -+ (b)

Since there is no free charge at the surface, thus, we have of = 0
and obtain

a(pouE

OPout| _ _9Pin
or

D1, — Dy, =0=€0E7) —€Ey =€

R
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From equation (a), we obtain

—EyR cos 6 + Z RIFT P;(cos ) = Z A;R'P;(cos )
1=0 1=0
Only [ = 1 survived. Thus, we obtain

B,

From equation (c), we obtain

o (L+ 1B, C _
—€oEycosO — ¢, —mz P (cos @) = ez IA;R*""1P,(cos 6)
=0 =0
Only [ = 1 survived. Thus, we obtain
2B,
_EOEO - f,j_ = EA]_
Together, we can solve the set of equations for A; and B,
3 €/€eg—1
Ay =———75 0 = _/_0_— °Eq
€/€y+2 €/€y+ 2

@iy = A7 Py (cos0) = ~ e g g Lorcosd = —-—— k22
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10-4 Electrostatic Energy and Force

ENERGY STORED IN THE DIELECTRICS

Recall that the energy stored in the conductor

W—lf d —Eoszd —1CV2
—2)PPE= =2

Since the first term contains the source charge density p and the
potential function V, it is a general formula for the energy stored in
any electrostatic system, for example, conductors or dielectrics.

Consider the energy stored in the dielectrics
Since

V-D= p
we can express the energy in terms of D.

W:%fdeT:%f(V-B)th

Since
v-(vD)=v(v-D)+D-w
thus, we obtain

W=%LV~(V5)dT—%f (B-V)Vdr

14

10~ o 1( /=
=—3§VD~da——f (D-v)var
2 Js 2 ),
As we choose a very large sphere with radius r, ¢ falls of like 1/r and

D falls off like 1 /r2. The area of the closed surface increases like r2.
Hence the surface integral decreases as fast as 1/r and will vanish as
r = oo, Thus, we obtain

W:—%L(B-V)Vdr:%fvﬁ-ﬁdr

Using the relation D=¢E , we obtain

W—lfﬁ Fd —EfEZd = 1fD2d
—2)€ t=3 T =2 t

Thus, we define an electrostatic energy density as
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w=iD F=Cp?=_p?
W=5 20 T 2e

EXAMPLES:

1.

In a parallel-plate capacitor of area A and separation d is charged
to a voltage V. The permittivity of the dielectric is €. Find the
stored electricstatic energy.

Area A

ANSWER:
Suppose that the fringing of the field at the edge is neglected, the

electric field in the dielectric is uniform,

E_V
T d

Thus, we have

€ € A% e (V\° €A
W=§-IE2dT=EJ‘<E> dT=E<a> (Ad)=—<d>V2

Since C = €A / d and Q = CV, the energy can be expressed as

1 Q?
— 2__
W=5CV2=-Qv=oo

This formula hold true for any parallel-plate capacitor or two-
conductor capacitor.

A cylindrical capacitor consists of an inner conductor of radius a
and outer conductor whose inner radius is b. The space between
the conductors is filled with a dielectric of permittivity €, and the
length of the capacitor is L. Determine the capacitance.
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Dielectric, ¢

ANSWER:
Method I:

Using Gauss's law, we have
i q

2melr
Suppose that the fringing of the field at the edge is neglected.

The potential difference between the inner and outer conductor is

cp=—faﬁ-d§’=—fa——cl—-f-drf=—i—ln b
b p 2meLr 2melL a

The capacitance is

_q q _ 2mel
KRN OY 9)
2mel n(a) In (a

Method II:

The energy stored in the dielectric region is

W—EfEZd —Efb( a )2(2 Lary =L 1 (®
~2 *=2), Grerr) VT T dmer M\ a

Since

q> q* b 2melL
=2¢ " amer ™\a) 7 ¢ T T py
e a In (E)

B. FORCE ON THE DIELECTRICS

(1) System of bodies with fixed charges

Image that the electric forces have displaced one of the bodies by a

differential distance ds (a virtual displacement). The work done by the
system is

10536 5



@)

dW = E, - d§
The work done is the expense of the stored energy

dW = —dW,
Since

dw, = VW, - ds
thus, we have

E, = —VW,

System of bodies with fixed potentials

If a charge dqy is added to the kth matter that is maintained at
potential @y, the work done by the sources is ¢rdq,. The total work
done by the sources to the system is

dws = Zq’k dqy
%

The work done by the system is
dWw = E, - d3
The potential energy of the distributed charges is

1 1
aw, =EZq>k day = 5 dW;

Conservation of energy demands that

AW, = dW + dW, = 2dW, = F, - d§ + dW, = F, - d§ = VW, - d§
Thus, we obtain

E, = VW,

EXAMPLES:

1. Consider a slab of linear dielectric material, partially inserted
between the plates of a parallel-plate capacitor. The fringing field
around the edges pulls the dielectric into the capacitor.
Determine the force on the slab.

, !

Dielectric
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ANSWER:
Fixed charges:

1q2
We=3c
aw, 1gdC 1 _dC
Fq = ———e—:—q—-—-:—VZ__
dx 2C%?dx 2 dx
Since
c =Y
= 0 (kl - )

T

1
]/Ve=§‘CV2

1 ac 1 EqW
F =-V2— = 2<__°_ )_
a=27 ax 2 d”
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